Stroke is frequently associated with severe neurological decline and mortality, and its incidence is expected to increase due to aging population. The only available pharmacological treatment for cerebral ischemia is thrombolysis, with narrow therapeutic windows. Efforts aimed to identify new therapeutics are crucial. In this study, we look into plausible molecular and cellular targets for JM-20, a new hybrid molecule, against ischemic stroke in vivo. Male Wistar rats were subjected to 90min middle cerebral artery occlusion (MCAO) following 23h of reperfusion. Animals treated with 8mg/kg JM-20 (p.o., 1h after reperfusion) showed minimal neurological impairment and lower GABA and IL-1β levels in CSF when compared to damaged rats that received vehicle. Immunocontent of pro-survival, phosphorylated Akt protein decreased in the cortex after 24h as result of the ischemic insult, accompanied by decreased number of NeuN+ cells in the peri-infarct cortex, cornu ammonis 1 (CA1) and dentate gyrus (DG) areas. Widespread reactive astrogliosis in both cortex and hippocampus (CA1, CA3, and DG areas) was observed 24h post-ischemia. JM-20 prevented the activated Akt reduction, neuronal death, and astrocytes reactivity throughout the brain. Overall, the results reinforce the pharmacological potential of JM-20 as neuroprotective agent and provide important evidences about its molecular and cellular targets in this model of cerebral ischemia.
Read full abstract