Abstract Due to the high reflectance and heat conductivity of copper and its alloys, the processing window for laser-based powder bed fusion (PBF-LB/M) processing of high-density copper components fundamentally overlaps with conduction and keyhole melting zones, resulting in the emergence of certain pores in the structure of printed parts. The present research aims to study how the development of process-induced lack-of-fusion or keyhole porosities during the PBF-LB/M process can affect the anisotropic microstructure and mechanical properties of the produced copper alloys. For this purpose, several samples were produced utilizing a similar CuCrZr-feedstock composition but varied process parameters from different areas of the PBF-LB/M processing window, specifically at laser powers of 300 W and 380 W which define the boarders of the conduction and keyhole regimes. X-ray computed tomography (XCT) revealed that the 300-W and 380-W samples achieved relative densities of 98.88% and 99.99%, respectively, with elongated lack-of-fusion pores forming at 300 W and semi-spherical keyhole pores at 380 W. Microstructural analyses employing scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) demonstrated strong anisotropy in different build directions of the samples, owing to the growth of long columnar grains with intense < 101 > orientation along the build directions. Here, the emergence of different types of pores can cause competition between the epitaxial growth of columnar grains and the heterogeneous nucleation of new grains on the layers’ interfaces, thereby significantly varying the grain size, preferred orientation, crystallographic texture, and microstructural anisotropy of the samples. Furthermore, compression tests and nanoindentation measurements of the printed alloys in the longitudinal and transverse directions revealed that the 300 W and 380 W samples exhibited compressive strength anisotropies of 0.061 and 0.072, and average nanoindentation hardness values of 1.3 GPa and 1.5 GPa, respectively. The orientation of elongated lack-of-fusion porosities perpendicular to the loading axis was identified as the most damaging factor, significantly reducing mechanical performance compared to the uniformly distributed keyhole pores.
Read full abstract