This paper presents a comprehensive investigation into the thermal stability of superlattice-like (SLL) thin films fabricated by varying the sputtering sequences of the SLL [Ge8Sb92(25nm)/GeTe(25nm)]1 and SLL [GeTe(25nm)/Ge8Sb92(25nm)]1 configurations. Our results reveal significantly enhanced ten-year data retention (Tten) for both thin films measured at 124.3 °C and 151.9 °C, respectively. These values surpass the Tten of Ge2Sb2Te5 (85 °C), clearly demonstrating the superior thermal stability of the studied SLL configurations. Interestingly, we also observe a distinct difference in the thermal stability between the two SLL configurations. The superior thermal stability of SLL [GeTe(25nm)/Ge8Sb92(25nm)]1 is attributed to the diffusion of the Sb precipitated phase from Ge8Sb92 to GeTe. This diffusion process effectively reduces the impact of the Sb phase on the thermal stability of the thin film. In contrast, in the case of SLL [Ge8Sb92(25nm)/GeTe(25nm)]1, the presence of the Sb precipitated phase in Ge8Sb92 facilitates the crystallization of GeTe, leading to reduced thermal stability. These findings underscore the significant influence of the sputtering sequence on the atomic behavior and thermal properties of superlattice-like phase change materials. Such insights provide a robust foundation for the design and exploration of novel phase change materials with improved thermal performance.