Stereocomplex (SC) crystallization between high-molecular-weight poly(l-lactide) (PLLA) and poly(d-lactide) (PDLA) provides a promising route to substantially improve the properties of polylactide (PLA), but conventional melt processing of the SC-type PLA (SC-PLA) is nearly impossible primarily due to the poor crystallization memory effect as well as serious thermal degradation after complete melting of SC crystallites with high melting temperatures of above 220 °C. Recently, we reported an innovative low-temperature (180–210 °C) sintering technology for fabricating SC-PLA products from its nascent powder. Unfortunately, its practical application has been significantly hindered by an extremely high pressure of 1 GPa, which must be utilized to ensure good surface wetting of the densified powder particles. With this challenge in mind, herein, the role of powder crystallinity in the low-temperature sintering has been investigated. Interestingly, we first demonstrate that depressing powder crystallinity is fa...
Read full abstract