Polyoxymethylene/thermoplastic polyurethane (POM/TPU) blends containing 10–30 wt % of TPU were electrospun using hexafluoroisopropanol as the solvent. The average fiber diameter increases with the increase in TPU content from 0.68 μm for neat POM fibers to 0.92 μm for POM/TPU 7:3 blend fibers due to the increase in solution viscosity. Core/sheath structure with the major component POM as the core and the minor component TPU as the sheath was observed by transmission electron microscopy and further confirmed by surface N contents of the blend fiber mats. The crystalline melting point and the degree of crystallinity of POM have no obvious change by coelectrospinning with TPU due to lack of interaction between POM and TPU as revealed by Fourier transform infrared spectroscopy. Tensile tests showed that the unusual high ductility of POM fiber mat could be further increased by coelectrospinning with 10 or 20 wt % TPU without significantly decreasing the stiffness and strength. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1853–1859, 2009