To address the structural defects and poor electrical conductivity of conventional Prussian blue analogues (PBAs) samples, in this study, nickel hexacyanoferrate (NiHCF) and nickel hexacyanoferrate epitaxially grown with iron hexacyanoferrate (Ni@FeHCF-X) series of samples were successfully synthesized by co-precipitation combined with epitaxial growth technique, and their structural and electrochemical properties were systematically characterized. X-ray powder diffractometer (XRD) results show that all the samples maintain a cubic crystal system structure, and the diffraction peaks of the (220) and (400) crystal planes are shifted to a lower angle with the epitaxial growth of ferric hexacyanoferrate (FeHCF). The successful embedding of Fe was confirmed by inductively coupled plasma (ICP) measurement data. Scanning electron microscope (SEM) images show that the samples are in a cubic morphology, and the surfaces gradually become rounded from sharp to rounded with the increase of the Fe content. High-resolution transmission electron microscope (HRTEM) and energy-dispersive spectrometer (EDS) analyses confirm the successful construction of the core-shell structure and the homogeneous distribution of the elements. Electrochemical testing showed that the Ni@FeHCF-X samples exhibited higher specific capacities and superior rate performance compared to NiHCF, particularly the Ni@FeHCF-4 sample, which delivered a high specific capacity of 73.4 mAh·g⁻¹ at a current density of 100 mA·g⁻¹, significantly outperforming the 38.2 mAh·g⁻¹ achieved by NiHCF. Additionally, the capacity retention rate of Ni@FeHCF-4 reached 42.16 %. Electrochemical impedance spectroscopy (EIS) further confirmed the reduced charge transfer resistance and enhanced reversibility of the electrochemical reactions in the Ni@FeHCF-X samples. These results demonstrate that Ni@FeHCF-4 significantly enhances the electrochemical performance of the samples in aqueous sodium-ion battery, providing new insights into the design of cathode materials for sodium-ion batteries.
Read full abstract