Immunolocalization of two highly acidic polysaccharides (PS-1 and PS-2) in a calcifying algaPleurochrysis carterae is described throughout the mineralization process, from before crystal nucleation through the cessation of crystal growth. This unicellular coccolithophorid alga is a useful model for mineralization because it produces calcified scales known as coccoliths in homogeneous cell culture. PS-1 and PS-2 were localized in the crystal coats of mature coccoliths and in electron dense Golgi particles. The polyanions are synthesized in medial Golgi cisternae and co-aggregate with calcium ions into discrete 25 nm particles. Particle-laden vesicles bud from cisternal margins and fuse with a coccolith-forming saccule containing an organic oval-shaped scale which forms the base of the future coccolith. The particles are localized on the base before the onset of mineral deposition and are present in the coccolith saccule throughout the period of crystal (CaCO3) nucleation and growth. During the final phase of coccolith formation, the particles disappear, and the mature crystals acquire an amorphous coat containing PS-1 and PS-2 polysaccharides which remain with the mineral phase after the coccoliths are extruded from the cell. Postulated mechanisms of polyanion-mediated mineralization are reviewed and their relevance to the calcification of coccoliths is addressed.