As healthcare becomes increasingly dependent on the Internet of Medical Things (IoMT) infrastructure, it is essential to establish a secure system that guarantees the confidentiality and privacy of patient data. This system must also facilitate the secure sharing of healthcare information with other parties within the healthcare ecosystem. However, this increased connectivity also introduces cybersecurity attacks and vulnerabilities. This comprehensive review explores the state-of-the-art in the IoMT, security requirements in the IoMT, cryptographic techniques in the IoMT, application of cryptographic techniques in securing the IoMT, security attacks on cryptographic techniques, mitigation strategies, and future research directions. The study adopts a comprehensive review approach, synthesizing findings from peer-reviewed journals, conference proceedings, book chapters, Books, and websites published between 2020 and 2024 to assess their relevance to cryptographic applications in IoMT systems. Despite advancements, cryptographic algorithms in IoMT remain susceptible to security attacks, such as man-in-the-middle attacks, replay attacks, ransomware attacks, cryptanalysis attacks, key management attacks, chosen plaintext/chosen ciphertext attacks, and side-channel attacks. While techniques like homomorphic encryption enhance security, their high computational and power demands pose challenges for resource-constrained IoMT devices. The rise of quantum computing threatens the efficacy of current cryptographic protocols, highlighting the need for research into quantum-resistant cryptography. The review identifies critical gaps in existing cryptographic research and emphasizes future directions, including lightweight cryptography, quantum-resistant methods, and artificial intelligence-driven security mechanisms. These innovations are vital for meeting the growing security requirements of IoMT systems and protecting against increasingly sophisticated threats.
Read full abstract