The knowledge of bathymetry and ocean tides plays a pivotal role at the crossroads of various scientific fields, especially in the Polar regions. Its significance extends to ocean circulation modeling and understanding the coupled dynamical response of the ocean, sea-ice and ice-sheet systems. In the Southern Ocean, conventional satellite altimetry measurements are rare below the 66° parallel. Hydrodynamic models are thus useful tools to provide spatially continuous information about ocean tides. However, the accuracy of ocean tide models around the Antarctic continent is currently limited by the quality of bathymetry. Recent reprocessing of decade-long CryoSat-2 data has facilitated a new computation of bathymetry around Antarctica, bringing innovative information on bathymetry gradients. This, combined with new compilations of bathymetry, ice draft, coastline, and grounding line datasets in ice-shelf regions, allows improving models and knowledge of ocean tides in the Southern Ocean. We developed a new high-resolution tidal model that implements the improved bathymetry data and includes data assimilation of satellite-altimetry tidal retrievals computed from CryoSat-2, filling the gap between the 66°S-limited coverage of the TOPEX-Jason suite missions and the Antarctic coast. Comparisons with tidal estimates derived from tide gauge measurements showed very good consistencies with an RMSE of 3 cm.