Cryopreserved fat has limited clinical applications due to its rapid absorption, high degree of fibrosis, and risk of complications after grafting. Many studies have verified that Adipose-derived mesenchymal stem cell-derived exosomes (ADSC-Exos) can improve fresh fat graft survival. This study assessed whether ADSC-Exos could improve the survival of cryopreserved fat grafts. Exosomes were isolated from human ADSCs were subcutaneously engrafted with adipose tissues stored under different conditions (fresh; cryopreserved for 1 month) into the backs of BALB/c nude mice (n = 24), and exosomes or PBS were administered weekly. Grafts were harvested at 1, 2, 4, and 8 weeks, and fat retention rate, histologic, and immunohistochemical analyses were conducted. At 1, 2, and 4 weeks after the transfer, cryopreserved fat grafts in groups of exosome-treated showed better fat integrity, fewer oil cysts, and reduced fibrosis. Further investigations of macrophage infiltration and neovascularization revealed that those exosomes increased the number of M2 macrophages at 2 and 4 weeks (p<0.05), but had limited impact on vascularization (p>0.05). It's important to note that no significant differences (p>0.05) were observed between the two groups in both histological and immunohistochemical evaluations at 8 weeks post-transplantation. This study suggests that ADSC-Exos could improve the survival of cryopreserved fat grafts in the short term (within 4 weeks), but the overall improvement was poor (after 8 weeks). This suggests that the utility of using ADSC-Exos to treat cryopreserved adipose tissue grafts is limited. This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .