In endangered animals that have been found dead or sterilized for medical reasons, testis is the ultimate source of haploid DNA or sperm. Thus, preservation of testicular sperm may be performed to rescue their genetics. The aim of this study was to evaluate protocols for testicular sperm freezing: as tissue fragments or cell suspension in domestic cats as a model. A pair of testes from each cat (n = 9) were cut into eight equal pieces. Four randomly selected pieces were cryopreserved as: (1) tissue pieces using two-step freezing; (2) tissue pieces using a slow passive cooling device (CoolCell); (3) sperm suspension after single-layer centrifugation (SLC) through colloids; and (4) sperm suspension without being processed through SLC. A testicular piece from each cat served as fresh control. Testicular sperm membrane and DNA integrity were evaluated before, and after, the cryopreservation process. In addition, spermatogenic cell types (testicular sperm, spermatogonia, spermatocyte, and spermatid) present in the suspension samples were counted before and after SLC. The results found that testicular sperm membrane integrity in the suspension after SLC process was higher than that in the fragment form neither using the two-step nor CoolCell freezing, both before and after freezing (before freezing: 92.3 ± 3.4 vs. 81 ± 4.5 and 80.0 ± 7.0; after freezing: 84.5 ± 4.6 vs. 71.2 ± 12 and 76.2 ± 4.6; P ≤ 0.05). Testicular sperm DNA integrity was, however, not different among groups. Furthermore, the samples processed through the SLC had higher ration of sperm cells: other spermatogenic cells than those were not processed through the SLC (88.9 ± 3.8 vs. 30 ± 7.9; P ≤ 0.05). In summary, testicular sperm cryopreserved as a minced suspension is considered suitable in terms of preventing sperm membrane integrity, and SLC is considered a selection tool for enriching haploid sperm cells from castrated or postmortem cats.
Read full abstract