Volcanic centers are characteristic features of ultraslow-spreading mid-ocean ridges, the least-explored parts of the global ridge system. Volcanic centers can provide insights into deep magmatic and metamorphic processes at these ridges. Here, we present data from the largest volcanic center on the Gakkel Ridge, the Langseth Ridge, situated at 60–62°E. Langseth is ∼10 km wide, consisting of three peaks that rise to 585 m water depth, some 3–4 km above the surrounding seafloor. It strikes perpendicular to Gakkel's spreading direction and can be traced for ∼40 km, which translates to an age of ∼8 Myr. Seafloor imaging revealed abundant (pillow) basalt but also fissures and geologic faults across the Langseth Ridge. Basaltic rocks were sampled at all summits and diabase at the slope of the northern summit that dips into the rift valley.Our samples are of normal to depleted mid-ocean ridge basalt composition and exhibit a wide range of major and trace element contents, due to magmatic processes, accumulation of macrocrysts, and hydrothermal alteration. Radiogenic isotope ratios, most notably 143Nd/144Nd and 208Pb/206Pb, trend from typical rift valley compositions to isotopically enriched values with increasing distance to the rift valley. This trend may imply melt pooling from different sources, potentially representing a shift from shallow melting beneath the rift valley to deeper melting of enriched sources and higher degrees of melting underneath Langseth. Mineral compositions and plagioclase sieve textures imply prolonged storage of magma at depth prior to eruption. Hydrothermal alteration occurred over a range of conditions. Basalt from the summits is weakly altered at temperatures ≪100 °C, which likely occurred in situ at the summit sites. Diabase samples experienced chloritization and albitization and display epidote and quartz veins, which formed at >300 °C. These assemblages and temperatures are typical for lower crustal levels and imply uplift of the samples of >1 km. Diabase samples from the Afanasenkov Seamount, another volcanic center on the Gakkel Ridge that we investigated for comparison, were altered under comparable conditions.Our findings suggest a combined volcanic–tectonic origin of the studied volcanic centers, potentially implying that such complexes may generally form due to the interplay of magmatism and tectonics. Researching volcanic centers has the potential to further our understanding of both deep and shallow crustal processes at ultraslow-spreading ridges, providing further insights into the role of these centers as linkages between lithosphere and hydrosphere and the (deep) biosphere they sustain.
Read full abstract