Crude oil is a key contaminant in aquatic environments entering via natural and anthropogenic sources, causing toxicity in marine organisms. Traditionally, biomarkers have been utilised to determine crude oil exposure and effects in aquatic organisms, however advances in genomic technologies has led to increased adoption of transcriptomic approaches for identifying response and detoxification pathways following contaminant exposure. This study presents the first transcriptome for the greentail prawn (Metapenaeus bennettae), a commercially targeted benthic decapod crustacean from eastern and south-eastern Australia. The Trinity generated de novo assembly, after redundancy clustering, resulted in 86,401 contigs, of these 22,252 displayed strong homology to transcripts in the NCBI's non-redundant protein, Swiss-Prot and TrEMBL databases. Furthermore, Gene Ontology was assigned to 15,079 annotated contigs and KEGG Orthology was identified for 1318 annotated contigs. Transcripts encoding common biomarkers utilised to determine crude oil exposure were identified, including those for detoxification phase I and II enzymes; with 40 transcripts encoding for members of the cytochrome P450 gene family and 8 transcripts encoding glutathione S-Transferases (GSTs). Transcripts encoding oxidative stress enzymes including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and metallothionein (MT) were identified, as well as stress induced proteins including crustacean hyperglycemic hormone (CHH) and heat shock proteins (Hsps). The annotated transcriptome of the greentail prawn and the identification of detoxification and stress response transcripts, provides a necessary resource for future studies geared toward characterising differential transcriptomic patterns and molecular pathways after exposure to crude oil in this and other crustacean species of environmental and commercial importance.
Read full abstract