Asphalt mixtures used in stress absorbing membrane interlayers (SAMIs) play a significant role in improving the performance of asphalt pavement. To investigate the rheological properties and phase transition characteristics of asphalt mixtures used in SAMI with temperature changes, twenty-seven candidate mixtures with different binders, gradation types and binder contents were selected in this research. During the study, dynamic mechanical analysis method was employed to evaluate their temperature-dependent properties and a series of wide-range temperature sweep tests were conducted under a sinusoidal loading. Some critical points and key indexes from the testing curves such as glass transition temperature (Tg) can be obtained. Test results show that phase transition characteristics can better reflect the rheological properties of asphalt mixtures at different temperatures. Crumb rubber modified asphalt mixtures (AR) provide a better performance at both high and low temperatures. Additionally, the range of AR asphalt mixtures’ effective functioning temperature ΔT is wider, and the slope K value is greater than the others, which indicates that AR asphalt mixtures are less sensitive to temperature changes. Additionally, gradation type and asphalt content also influence the properties: finer gradation and more asphalt content have a good effect on the low-temperature performance of the asphalt mixtures; while mixtures with a coarser gradation and less asphalt content perform better at high temperature and they are less sensitive to temperature changes. Finally, AR asphalt mixture is more suitable to be applied in the SAMI due to its phase transition characteristics from this method.
Read full abstract