This work was intended to determine which enzymatic activities from crude synaptosomal mammalian brain membranes could qualify for the status of 5-hydroxytryptamine-moduline (5-HT-moduline, LSAL, Leu-Ser-Ala-Leu) inactivating enzymes. An enzymatic assay for 5-HT-moduline metabolism was developed using [ 3 H ]5-HT-moduline measurement and high performance liquid chromatography (HPLC) technique to identify and quantify 5-HT-moduline metabolites. 5-HT-moduline metabolism displayed all characteristics of metalloprotease activity: sensitivity to divalent ion chelators, reactivation by Zn 2+ ions and a pH optimum in the 7–8 range. Bestatin, an aminopeptidase inhibitor, allowed the identification of two enzymatic activities responsible for this metabolism: a bestatin-sensitive aminopeptidase and an endoprotease cleaving 5-HT-moduline into LS (Leu-Ser) and AL (Ala-Leu) dipeptides. This latter enzyme was shown to have a K m of 37.1±3.6 μM and a V max of 5.5 μmol min −1 l −1 per mg of protein. Moreover, this enzyme was insensitive to peptidyl dipeptidase A (angiotensin converting enzyme, EC 3.4.15.1), endothelin converting enzyme and neutral endopeptidase (neprylisin, EC 3.4.24.11) inhibitors and displayed some specificity among 5-HT-moduline-analogues and in particular recognized only tetrapeptides. These results, together with the isolation of the LS and AL metabolites [Rousselle, J.C., Massot, O., Delepierre, M., Zifa, E., Rousseau, B., Fillion, G., 1996. Isolation and characterization of an endogenous peptide from rat brain interacting specifically with the serotonergic 1B receptor subtypes. J. Biol. Chem. 271, 726–735] during the purification process of 5-HT-moduline are strong arguments for the physiological implication of this endoprotease in 5-HT-moduline metabolism.
Read full abstract