To address the asymmetric flow field of the flying wing under cross-flow conditions at high angles of attack, dual synthetic jet actuators (DSJAs) are positioned at the leading edge of the windward side. DSJ control effectively affects the flow separation structure on the windward side, thereby enhancing leading-edge suction. This leads to both lift enhancement and drag reduction. Furthermore, it strengthens the stabilizing roll moment and improves lateral static stability. Additionally, the effective suppression of the separation zone significantly reduces the aerodynamic load fluctuations of the flying wing after control. In terms of excitation frequency, low-frequency excitation more effectively generates lift, transfers energy downstream, promotes momentum transfer, and results in an 8.2% increase in lift. Moreover, the DSJ excitation exhibits fast response characteristics, with the entire flow establishment process taking only 190 ms. Therefore, through DSJ control, the asymmetric flow under lateral conditions can be effectively corrected, expanding the flight envelope and enhancing the maneuverability and reliability of the aircraft.
Read full abstract