Data on processes of electron scattering on ions and neutral atoms are required in fundamental studies and in applied research in such fields as astro- and laser physics, low density plasma simulations, kinetic modeling etc. Experimental and computational data on elastic and inelastic electron scattering in a wide range of electron energies is available mostly for the electron interaction with neutral atoms, but are very limited for the scattering on ions, notably for elastic processes. In present work the calculational approaches for the cross-section computation of electron elastic and inelastic scattering on neutral atoms and ions are considered. The atomic and ion properties obtained in quantum-statistical Hartree-Fock-Slater model are used in the direct computation of electron elastic scattering and ionization cross-sections by a partial waves method, semiclassical and distorted-wave approximations. Calculated cross-sections for elastic scattering on nitrogen and oxygen atoms and ions, and electron ionisation cross-sections are compared with the available experimental data and widely used approximations and propose consistent results. Considering applicability of Hartree-Fock-Slater model in wide scope of temperatures and densities, such approach to the cross-section calculation can be used in a broad range of energies and ion charges.