The incidence of most diseases is low enough that in. large populations the number of new cases may be considered a Poisson variate. This paper explores models and methods for analyzing such data Specific cases are the estimation and testing of ratios and the cross-product ratios, both simple and stratified* We assume the Poisson means are exponential functions of the relevant parameters. The resulting sets of sufficient statistics are partitioned into a test statistic and a vector of statistics related to the nuisance parameters . The methods derived are based on the conditional distribution of the test statistic given the other sufficient statistics. The analyses of stratified cross-product ratios are seen to be analogues of the noncentral distribution associated with theanalysis of the common odds ratio in several 2×2 tables. The various methods are illustrated in numerical examples involving incidence rates of cancer in two metropolitan areas adjusting for both age and sex.