Bioremediation of trichloroethylene (TCE) contaminated groundwater has recently attracted considerable attention. In this study, laccase was immobilized on amino modified magnetic pine biochar (MBC-NH2) by adsorption-crosslinking-covalent binding method, and its application in the degradation of TCE was evaluated. MBC-NH2 was obtained from pine sawdust by calcination, magnetic modification and amino modification. MBC-NH2 had high specific surface area (71.3 m2/g), rich surface functional groups and good magnetism. Under the conditions of 25 °C, pH = 4, glutaraldehyde (GA) concentration of 7 %, crosslinking time of 1 h, laccase concentration of 0.75 mg/mL, and immobilization time of 7 h, the loading capacity of laccase on MBC-NH2 carrier was as high as 782 mg/g. Compared with free laccase, immobilized laccase showed higher pH stability and thermal stability, and its activity remained 48.5 % after being reused for 10 times, and 80.8 % after being stored at 4 °C for 30 days. The immobilized laccase exhibited a good degradation effect on TCE. At 25 °C, pH = 4, immobilized laccase concentration of 0.35 g/L, and initial TCE concentration of 10 mg/L, the degradation efficiency of TCE by immobilized laccase was as high as 92.1 % within 48 h. In addition, the degradation products of TCE were analyzed, and the results showed that immobilized laccase could degrade TCE into non-toxic products through epoxidation, hydroxylation, and dechlorination. The immobilized laccase biocatalyst prepared in this study can achieve efficient degradation of TCE, which provides a feasible solution for chlorinated pollution of water resources. These research results are of great significance for the synthesis of biocatalysts for the efficient degradation of chlorinated hydrocarbons.