Helical strakes are known to reduce and even eliminate the oscillation amplitude of vortex-induced vibrations (VIV). This reduction will increase the fatigue life. The optimum length and position of the helical strakes for a given riser will vary with the current profile. The purpose of the present paper is to describe how data from VIV experiments with suppressing devices like fairings and strakes can be implemented into a theoretical VIV model. The computer program is based on an empirical model for calculation of VIV. Suppression devices can be accounted for by using user-defined data for hydrodynamic coefficients, i.e. lift and damping coefficients, for the selected segments. The effect of strakes on fatigue damage due to cross flow VIV is illustrated for a vertical riser exposed to sheared and uniform current. Comparison of measured and calculated fatigue life is performed for a model riser equipped with helical strakes. A systematic study of length of a section with strakes for a set of current profiles is done and the results are also presented.
Read full abstract