China contributed nearly one-fifth of the world maize production over the past few years. Mapping the distributions of maize cropland in China is crucial to ensure global food security. Nonetheless, 10 m maize cropland maps in China are still unavailable, restricting the promotion of sustainable agriculture. In this paper, we collect numerous samples to produce annual 10-m maize cropland maps in China from 2017 to 2021 with a machine learning based classification framework. To overcome the temporal variations of plants, the proposed framework takes Sentinel-2 sequence images as input and utilizes deep neural networks and random forest as classifiers to map maize in a zone-specific way. The generated maps have an overall accuracy (OA) spanning from 0.87 to 0.95 and the maize-cultivated areas estimated by the maps are highly consistent with the records in statistical yearbooks (R2 varying from 0.83 to 0.95). To the best of our knowledge, this is the first annual 10-m maize maps across China, which largely facilitates the sustainable agriculture development in China dominated by smallholder farmlands.
Read full abstract