The CRISPR/Cas9 technology, renowned for its ability to induce precise genetic alterations in various crop species, has encountered challenges in its application to grain legume crops such as pigeonpea and groundnut. Despite attempts at gene editing in groundnut, the low rates of transformation and editing have impeded its widespread adoption in producing genetically modified plants. This study seeks to establish an effective CRISPR/Cas9 system in pigeonpea and groundnut through Agrobacterium-mediated transformation, with a focus on targeting the phytoene desaturase (PDS) gene. The PDS gene is pivotal in carotenoid biosynthesis, and its disruption leads to albino phenotypes and dwarfism. Two constructs (one each for pigeonpea and groundnut) were developed for the PDS gene, and transformation was carried out using different explants (leaf petiolar tissue for pigeonpea and cotyledonary nodes for groundnut). By adjusting the composition of the growth media and refining Agrobacterium infection techniques, transformation efficiencies of 15.2% in pigeonpea and 20% in groundnut were achieved. Mutation in PDS resulted in albino phenotype, with editing efficiencies ranging from 4 to 6%. Sequence analysis uncovered a nucleotide deletion (A) in pigeonpea and an A insertion in groundnut, leading to a premature stop codon and, thereby, an albino phenotype. This research offers a significant foundation for the swift assessment and enhancement of CRISPR/Cas9-based genome editing technologies in legume crops.
Read full abstract