In present day agriculture, early and accurate identification of plant diseases is essential for prompt response, which protects crop quality and output. This paper presents the Entangled Quantum-Inspired Deep learning model (EQID), a unique method that improves feature representation and classification in plant disease prediction by utilizing the concepts of quantum computing. Two different datasets with images of potatoes and tomatoes as leaves were used to test the EQID model, which performed better than traditional models. EQID obtained 98.96% accuracy, 98.98% precision, 98.96% recall, and 98.90% F1 score on images of potato leaves. For tomato leaves, comparable outcomes were noted, with accuracy, precision, recall, and F1 score all above 99.61%. The accuracy of disease prediction is greatly increased by the efficient and effective feature representation made possible by the EQID model's inclusion of quantum computing techniques. Additionally, the model outperformed other cutting-edge models such as DenseNet-121, VGGNet 16, and Xception Net, illustrating the potentially revolutionary effects of quantum-inspired models in agriculture. Future work will focus on applying the EQID model to a broader range of crops and plant diseases, as well as incorporating additional data sources to further enhance the model's predictive capabilities.
Read full abstract