Phytohormones that trigger or repress flower meristem development in apple buds are thought to be locally emitted from adjacent plant tissues, including leaves and fruitlets. The presence of fruitlets is known to inhibit adjacent buds from forming flowers and thus fruits. The resulting absence of fruitlets the following season restores flower-promoting signalling to the new buds. The cycle can lead to a biennial bearing behaviour of alternating crop loads in a branch or tree. The hormonal stimuli that elicit flowering is typically referred to as the floral induction (FI) phase in bud meristem development. To determine the metabolic pathways activated in FI, young trees of the cultivar 'Ruby Matilda' were subjected to zonal crop load treatments imposed to two leaders of bi-axis trees in the 2020/2021 season. Buds were collected over the expected FI phase, which is within 60 DAFB. Metabolomics profiling was undertaken to determine the differentially expressed pathways and key signalling molecules associated with FI in the leader and at tree level. Pronounced metabolic differences were observed in trees and leaders with high return bloom with significant increases in compounds belonging to the cytokinin, abscisic acid (ABA), phenylpropanoid and flavanol chemical classes. The presence of cytokinins, namely adenosine, inosine and related derivatives, as well as ABA phytohormones, provides further insight into the chemical intervention opportunities for future crop load management strategies via plant growth regulators.
Read full abstract