Accumulating evidence has suggested that the imbalance of gut microbiota is commonly observed in patients with inflammatory bowel disease (IBD). However, it remains unclear whether dysbiosis is a cause or consequence of chronic intestinal inflammation. We aimed to investigate the causal relationships of gut microbiota and metabolites with IBD, including ulcerative colitis (UC) and Crohn's disease (CD). We applied two-sample Mendelian randomization using summary statistics from the gut microbiota genetic consortium (n = 1812), the Framingham Heart Study (n = 2076) and the International IBD Genetics Consortium (n = 86,640). Using the genetic approach, the increase in OTU10032 unclassified Enterobacteriaceae was associated with higher risks of IBD (OR, 1.03; 95% CI, 1.00-1.06; P = 0.033) and CD (1.04; 1.01-1.08; P = 0.015). Importantly, an Enterobacteriaceae-related metabolite taurine was positively associated with risks of IBD (1.04; 1.01-1.08; P = 0.016) and UC (1.05; 1.01-1.10; P = 0.024). Notably, we also found betaine, a downstream product of Enterobacteriaceae metabolism, was causally associated with a higher risk of CD (1.10; 1.02-1.18; P = 0.008). In addition, increased Erysipelotrichaceae family were causally related to lower risks of IBD (0.88; 0.78-0.98; P = 0.026) and UC (0.86; 0.75-0.99; P = 0.042), and Actinobacteria class (0.80; 0.65-0.98; P = 0.028) and Unclassified Erysipelotrichaceae (0.79; 0.64-0.98; P = 0.036) were associated with lower risks of UC and CD, respectively. Our finding provided new insights into the key role of gut metabolites such as taurine and betaine in host-microbiota interactions of IBD pathogenesis, indicating that host-microbe balance strongly influences inflammatory conditions.
Read full abstract