We report on a combined structural and electronic analysis of niobium ultrathin films (from 2 to 10 nm) deposited in ultrahigh vacuum on atomically flat R-plane sapphire wafers. A textured polycrystalline morphology is observed for the thinnest films, showing that heteroepitaxy is not achieved under a thickness of 3.3 nm, which almost coincides with the first measurement of a superconducting state. The superconducting critical temperature rise takes place on a very narrow thickness range, of the order of a single monolayer (ML). The thinnest superconducting sample (3 nm/9 ML) has an offset critical temperature above 4.2 K and can be processed by standard nanofabrication techniques to generate air- and time-stable superconducting nanostructures, useful for quantum devices.
Read full abstract