We study the bidimensional voter model on a square lattice with numerical simulations. We demonstrate that the evolution takes place in two distinct dynamic regimes; a first approach towards critical site percolation and a further approach towards full consensus. We calculate the time dependence of the two growing lengths, finding that they are both algebraic but with different exponents (apart from possible logarithmic corrections). We analyze the morphology and statistics of clusters of voters with the same opinion. We compare these results to the ones for curvature driven two-dimensional coarsening.