ABSTRACT This study investigates rapid dynamic pressure variations in water distribution networks due to critical incidents such as pipe bursts and valve operations. We developed and implemented a machine learning (ML)-based methodology that surpasses traditional slow cycles of pressure data acquisition, facilitating the efficient capture of transient phenomena. Employing the Orion ML library, which features advanced algorithms including long short-term memory dynamic threshold, autoencoder with regression, and time series anomaly detection using generative adversarial networks, we engineered a system that dynamically adjusts data acquisition frequencies to enhance the detection and analysis of anomalies indicative of system failures. The system's performance was extensively tested using a pilot-scale water distribution network across diverse operational conditions, yielding significant enhancements in detecting leaks, blockages, and other anomalies. The effectiveness of this approach was further confirmed in real-world settings, demonstrating its operational feasibility and potential for integration into existing water distribution infrastructures. By optimizing data acquisition based on learned data patterns and detected anomalies, our approach introduces a novel solution to the conventionally resource-intensive practice of high-frequency monitoring. This study underscores the critical role of advanced ML techniques in water network management and explores future possibilities for adaptive monitoring systems across various infrastructural applications.
Read full abstract