In recent years, many researchers have studied active vibration suppression of fluttering plates using piezoelectric actuators. Lots of these researchers have focused on optimal placement of piezoelectric patches to obtain maximum controllability of the plate. Although mass and stiffness characteristics of bonded patches can alter the aeroelastic behavior of fluttering plates, few of the investigators have considered the effect of the mentioned parameters in the optimization process. This paper investigates the effect of a bonded patch on the aeroelastic behavior of cantilevered plates in supersonic flow and examines the optimal location of the patch for the best controllability performance. For mathematical simulation of the structure, linear von Karman plate theory along with first-order piston theory is employed. The results obtained through this study reveal that a bonded patch with a small mass ratio can change the system critical dynamic pressure significantly. The maximum raise of the critical dynamic pressure is acquired when the bonded patch is placed on the leading edge of the plate. A variation of the system’s aerodynamic characteristics, subsequently, influences the control performance of the bonded patch and alters the optimal patch location.
Read full abstract