Photoaging of nanoplastics (NPs) and heteroaggregate with suspended sediments (SS) determines transport processes and ecological risks of NPs in aquatic environments. This study investigated the disruption of photoaging on the heteroaggregation behavior of polystyrene NPs (PSNPs) and SS in different valence electrolyte solutions and deduced the interaction mechanisms by integrating aggregation kinetics and molecular dynamics (MD) simulation. Increasing the electrolyte concentration significantly enhanced the heteroaggregation between PSNPs and SS, and the divalent electrolytes induced the heteroaggregation more efficiently. MD simulation at the molecular level revealed that PS and SS could spontaneously form clusters, and photoaged PS has a stronger potential to fold into a dense state with SS. Photoaging for 30 d retarded heteroaggregation due to the steric hindrance produced by the leached organic matter in NaCl solutions, and the critical coagulation concentration (CCC) increased by more than 85.44%. Contrarily, photoaging caused more oxygen-containing functional groups produced on the surface of PSNPs through Ca2+ bridging promoting heteroaggregation and thus destabilizing in CaCl2 solutions, the CCC decreased by 23.53% ∼ 35.29%. These findings provide mechanistic insight into the environmental process of NPs and SS and are crucial for a comprehensive understanding of the environmental fate and transport of NPs in aquatic environments.
Read full abstract