Magnetic properties, magnetocaloric effect, and critical behavior of Fe84-xCr2+xB2Co2Zr10 (x = 1, 2, 3, 4, 5, and 6) rapidly quenched alloy ribbons prepared by melt-spinning method have been investigated. X-ray diffraction analysis shows that the ribbons are almost amorphous. All the ribbons exhibit soft magnetic behavior with a low coercivity, Hc 0.8 J.kg−1.K−1 (under a magnetic field change of 12 kOe), and the wide working temperature range, δT > 90 K, around room temperature, have been achieved on these alloy ribbons. The obtained results reveal that Fe84-xCr2+xB2Co2Zr10 alloys are potential candidates for the magnetic refrigerants at room temperature region. Using the Arrott-Noakes method, critical analyses around the ferromagnetic-paramagnetic phase transition elucidated the magnetic orders in the alloys. The critical parameters determined for Fe84-xCr2+xB2Co2Zr10 ribbons are close to those of the mean-field theory applied for the long-range ferromagnetic orders.