This study analyzed the lateral overturning and backward rollover characteristics of a multi-purpose agricultural machine recently developed in South Korea. Free body diagrams for theoretical analysis and a three-dimensional model for dynamic simulation were created by reflecting the actual dimensions and material properties of the multi-purpose agricultural machine. The simulation model was verified using the minimum turning radius and angle of static falling down sidelong derived through the certified performance test. The lateral overturning and backward rollover characteristics of the multi-purpose agricultural machine were analyzed using a verified simulation model and theoretical equations derived through literature review. In the lateral overturning analysis, the critical traveling speed at which lateral overturning occurs was derived according to the inner steering angle of the front wheels under steady-state turning conditions. In the backward rollover analysis, the critical angular velocity and theoretical traveling speed of the main body at which backward rollover occurs were derived according to lifting angle of the front wheels. There was no significant difference between the theoretical analysis and simulation results at 5% significance level, and we derived the appropriate traveling speed conditions of the multi-purpose agricultural machine that do not cause lateral overturning and backward rollover.
Read full abstract