The viscoelastic deformation behavior of a sedimentary rock under different loading rates is numerically modeled and investigated by the numerical manifold method (NMM). By incorporating a modified 3-element viscoelastic constitutive mode in the NMM, crack initiation and propagation criteria, and crack identification and evolution techniques, the effects of the loading rates on the cracking behavior of a sedimentary rock, such as crack open displacement, crack sliding displacement, crack initiation, crack propagation and final failure mode, are successfully modeled. The numerical results reveal that under a high loading rate (>1,000 MPa/s), due to the viscoelastic property of the sedimentary rock, not only the structural behavior deviates from that of elastic model, but also different cracking processes and final failure modes are obtained.
Read full abstract