Fuzzy analytic hierarchy process (AHP) proves to be a very useful methodology for multiple criteria decision-making in fuzzy environments, which has found substantial applications in recent years. The vast majority of the applications use a crisp point estimate method such as the extent analysis or the fuzzy preference programming (FPP) based nonlinear method for fuzzy AHP priority derivation. The extent analysis has been revealed to be invalid and the weights derived by this method do not represent the relative importance of decision criteria or alternatives. The FPP-based nonlinear priority method also turns out to be subject to significant drawbacks, one of which is that it may produce multiple, even conflict priority vectors for a fuzzy pairwise comparison matrix, leading to entirely different conclusions. To address these drawbacks and provide a valid yet practical priority method for fuzzy AHP, this paper proposes a logarithmic fuzzy preference programming (LFPP) based methodology for fuzzy AHP priority derivation, which formulates the priorities of a fuzzy pairwise comparison matrix as a logarithmic nonlinear programming and derives crisp priorities from fuzzy pairwise comparison matrices. Numerical examples are tested to show the advantages of the proposed methodology and its potential applications in fuzzy AHP decision-making.