Urban crime is an ongoing problem in metropolitan development and attracts general concern from the international community. As an effective means of defending urban safety, crime prediction plays a crucial role in patrol force allocation and public safety. However, urban crime data is a macro result of crime patterns overlapped by various irrelevant factors that cause inhomogeneous noises—local outliers and irregular waves. These noises might obstruct the learning process of crime prediction models and result in a deviation of performance. To tackle the problem, we propose a novel paradigm of <underline>Du</underline>al-<underline>ro</underline>bust Enhanced Spatial-temporal Learning <underline>Net</underline>work (DuroNet), an encoder-decoder architecture that possesses an adaptive robustness for reducing the effect of outliers and waves. The robustness is mainly reflected on two aspects. One is a locality enhanced module that employs local temporal context information to smooth the deviation of outliers and dynamic spatial information to assist in understanding normal points. The other is a self-attention-based pattern representation module to weaken the effect of irregular waves by learning attentive weights. Finally, extensive experiments are conducted on two real-world crime datasets before and after adding Gaussian noises. The results demonstrate the superior performance of our DuroNet over the state-of-the-art methods.
Read full abstract