Nowadays, small and medium-sized enterprises (SMEs) have become an essential part of the national economy. With the increasing number of such enterprises, how to evaluate their credit risk becomes a hot issue. Unlike big enterprises with massive data to analyse, it is hard to find enough primary information of SMEs to assess their financial status, which makes the credit risk evaluation result less accurate. Limited by the lack of primary data, how to infer SMEs' credit risk from secondary data, such as information about their upstream, downstream, parent, and subsidiary enterprises, attracts big attention from industry and academy. Targeting on accurately evaluating the credit risk of the SME, in this study, we exploit the representative power of the information network on various kinds of SME entities and SME relationships to solve the problem. With that, a heterogeneous information network of SMEs is built to mine enterprise's secondary information. Furthermore, a novel feature named meta-path feature is proposed to measure the credit risk, which makes us able to evaluate the financial status of SMEs from various perspectives. Experiments show that our proposed meta-path feature is effective to identify SMEs with credit risks.