BackgroundVascular dementia (VD) is the second most common type of dementia after Alzheimer's disease. β-asarone, a major component of Acorus tatarinowii Schott, is important in neurodegenerative and neurovascular diseases. Studies have confirmed that β-asarone can mitigate autophagy and reduce damage in hypoxic cells. We also reported that β-asarone improves learning and memory. This study further clarifies whether β-asarone attenuates cerebral ischaemic injury by acting through the cAMP/PKA/CREB pathway in VD model mice. MethodsHere, genes and potential pathways that may be targeted by β-asarone for the treatment of transient cerebral ischaemia (TCI) and cognitive impairment (CI) were obtained using network pharmacology. The two-vessel occlusion method was used to establish the VD model. The Morris water maze test was used to evaluate the effects on memory. Then, the protein levels of mitofusin-2 (Mfn2), brain-derived neurotrophic factor (BDNF), optic atrophy 1 (OPA1), cyclic adenosine monophosphate (cAMP), myelin basic protein (MBP), matrix metalloproteinase-9 (MMP9) and neuron specific enolase (NSE) were determined by ELISA. The levels of superoxide dismutase (SOD) and malonaldehyde (MDA) were measured using commercial kits. Then, qRT-PCR was employed to investigate the expression of the candidate genes screened from the protein-protein interaction (PPI) network. Furthermore, the expression of the autophagy-related proteins Beclin-1, (microtubule-associated protein light chain 3) LC3, p62, postsynaptic density protein 95 (PSD95), protein kinase A (PKA), pPKA, cyclic-AMP response binding protein (CREB), and pCREB was determined by western blotting. The expression of autophagy-related proteins, PSD95 and translocase of outer mitochondrial membrane 20 (TOM20) was determined by immunofluorescence analyses. ResultsThe network pharmacological analysis showed 234 targets related to β-asarone, 1,118 genes related to TCI and 2,039 genes associated with CI. Our results confirm that β-asarone treatment not only alleviated brain damage in the VD model by improving mitochondrial and synaptic function, reducing neuronal injury and upregulating the expression of antioxidants but also effectively improved the cognitive behaviour of VD model mice. Moreover, β-asarone downregulated VD-induced RELA and CCND1 mRNA expression. In addition, we validated that β-asarone increased the phosphorylation of PKA and CREB and upregulated cAMP protein expression. The results showed that the cAMP/PKA/CREB signalling pathway was upregulated. Moreover, β-asarone administration decreased the protein expression levels of Beclin-1 and LC3 and increased the expression levels of p62 in VD model mice. Conclusionsβ-asarone inhibits Beclin-1-dependent autophagy and upregulates the cAMP/PKA/CREB signalling pathway to attenuate mitochondrial and synaptic damage from cerebral ischaemia and improve learning and cognitive abilities in VD model mice.
Read full abstract