Topicality. The level of genetic yield potential and adaptive properties of modern bread winter wheat varieties at this stage of breeding development is at a fairly high level. So breeding, improve-ment of bread winter wheat is becoming increasingly difficult. For this purpose, the creation and identification of new genetic sources of valuable traits and creation of genetic diversity, evaluation and selection of desired genotypes is extremely relevant. Issues. Introduction of alien translocations into the gene pool of bread winter wheat can serve as one of such sources of new original genetic material. However, the effects of these translocations are manifested to varying degrees depending on the genetic environment of hybrids and agroclimatic conditions of genotype selection. Aim. To compare the changes in the yield of recombinant lines and plant productivity elements based on their drought and heat tolerance depending on their genetic effects of wheat-rye translocations (WRT) 1AL.1RS and 1BL.1RS. To determine the use effectiveness of each WRT in order to create more perfect varieties of bread winter wheat under the conditions of soil-air drought in the Steppe zone of Ukraine. Materials and Methods. In 2010-2020, field trials were carried out on the Institute’s fields on the by black fallow as the annual predecessor with the optimal agricultural background for breeding work. During the analysis of experimental data, all changes in meteorological conditions over the years of research were taken into account. In general, weather conditions were arid, which is typical for the Steppe zone. The studies of 112 lines (9.2 %) were carried out in the Department of Genetic Basis of Breeding of the Plant Breeding and Genetics Institute at the National Center of Seeds and Cultivar In-vestigation led by A. I. Rybalka, the rest 1093 lines (90.8 %) were studied in the Institute of Plant Pro-tection NAAS led by N. A. Kozub and I. O. Sozinov. The material of competitive variety trials was tested on the presence of translocations and their state by DNA markers in the Department of General and Molecular Genetics of the the Plant Breeding and Genetics Institute at the National Center of Seeds and Cultivar Investigation led by V. I. Fait. Mathematical processing and analysis of the study results were performed using the methods of B. A. Dospekhov and P. F. Rokitskyi, and with Microsoft Excel 2007. Results. It was established that genetic effects of the most widespread in the world breeding practice wheat-rye translocations 1АL.1RS and 1ВL.1RS are considerably modified by features of their interaction in genetic environment and depending on agroclimatic conditions of growing introgressive genotypes. The positive effect of 1AL.1RS on the yield, total and productive tillering, and head productivity elements was significantly revealed due to simultaneous positive effect of translocation on drought and heat tolerance of plants. As a result of complete breeding cycle, a series of bread winter wheat varieties was developed on the material of 1AL.1RS, such as Zhytnytsia Odeska, Oktava Odeska, Liha Odeska, Duma Odeska, Versiia Odeska, which provided 10–15 % increase in yield to standards according to the station and state variety testing. These varieties are listed in the State Register of Ukraine and Moldova. Conclusions. The use of WRT 1AL.1RS is perspective for further bread winter wheat breeding, and in the the Plant Breeding and Genetics Institute at the National Center of Seeds and Cultivar Inves-tigation as one of the next stages of improvement of bread winter wheat varieties for arid conditions of the South of Ukraine. The use of 1ВL.1RS in wheat breeding in the region is less promising method, but does not exclude the possibility of obtaining a positive result in a favorable combination with highly adapted local varieties. Keywords: bread winter wheat, recombinant lines, yield, wheat-rye translocations 1AL.1RS and 1BL.1RS.
Read full abstract