Concern over nanoplastic contamination of wetland ecosystems has been increasing. However, little is known about the effect of photoaging on the distribution and biological response of the nanoplastics. Here, palladium-labeled polystyrene nanoplastics (PS-Pd NPs) at 0.05-50 mg/L were exposed to constructed wetland microcosms containing floating (Eichhornia crassipes) and submerged (Vallisneria natans) macrophytes. Results demonstrate that PS-Pd NPs' concentration in surface water after 2-4 weeks of exposure was decreased by over 98.4% as compared with that in the 1st week. Photoaging enhanced the surface charge and colloidal stability of PS-Pd NPs, with a subsequent increase of the content of PS-Pd NPs in surface and middle layer water by 264.6 and 207.4%, respectively. Additionally, photoaging significantly enhanced the accumulation of PS-Pd NPs in E. crassipes roots by 6.9-65.0% and significantly decreased it in V. natans shoots by 59.7-123.0%. PS-Pd NPs inhibited the growth of V. natans by 43.8% at 50 mg/L. Mechanistically, PS-Pd NPs induced oxidative stress in V. natans, leading to the disruption of the metabolic pathway. Interestingly, PS-Pd NP exposure inhibited nitrification in wetland ecosystems due to the alteration of the related bacterial community (Ellin6067 decreased by 13.19%). These findings deepen our understanding of the environmental fate and risk of plastic particles in wetland ecosystems.
Read full abstract