The caudal cranium of the South American sabertooth Thylacosmilus atrox (Thylacosmilidae, Sparassodonta, Metatheria) is described in detail, with emphasis on the constitution of the walls of the middle ear, cranial vasculature, and major nerve pathways. With the aid of micro-CT scanning of the holotype and paratype, we have established that five cranial elements (squamosal, alisphenoid, exoccipital, petrosal, and ectotympanic) and their various outgrowths participate in the tympanic floor and roof of this species. Thylacosmilus possessed a U-shaped ectotympanic that was evidently situated on the medial margin of the external acoustic meatus. The bulla itself is exclusively composed of the tympanic process of the exoccipital and rostral and caudal tympanic processes of the squamosal. Contrary to previous reports, neither the alisphenoid nor the petrosal participate in the actual tympanic floor, although they do contribute to the roof. In these regards Thylacosmilus is distinctly different from other borhyaenoids, in which the tympanic floor was largely membranous (e.g., Borhyaena) and lacked an enlarged ectotympanic (e.g., Paraborhyaena). In some respects Thylacosmilus is more similar to hathliacynids than to borhyaenoids, in that the former also possessed large caudal outgrowths of the squamosal and exoccipital that were clearly tympanic processes rather than simply attachment sites for muscles. However, hathliacynids also exhibited a large alisphenoid tympanic process, a floor component that is absent in Thylacosmilus. Habitual head posture was inferred on the basis of inner ear features. Large paratympanic spaces invade all of the elements participating in bounding the middle ear, another distinctive difference of Thylacosmilus compared to other sparassodonts. Arterial and venous vascular organization is relatively conservative in this species, although some vascular trackways could not have been securely identified without the availability of CT scanning. The anatomical correlates of the internal carotid in relation to other basicranial structures, the absence of a functional arteria diploetica magna, and the network for venous return from the endocranium agree with conditions in other sparassodonts.