The trend towards virtual testing and digital-twin assisted management means that the accurate and reliable simulation of fatigue crack propagation behaviour is more important than ever. Reliable but conservative approaches to support this are in widespread use in the aerospace industry. Nevertheless, the conservatism comes at a significant cost in terms of reduced structural life and an increased ongoing inspection requirement and, as such leads to questions about the economic burden of these approaches. Recent comparisons between blind predictions and test results revealed the extent of the issue for cracking in aluminium alloy 7075-T7351 coupons with configuration and loading representative of military transport aircraft wing skins. The current models were generally conservative by a factor of two or more in terms of crack propagation life. This suggested that there was significant scope to improve the modelling to better reflect all the complex contributing factors. The current work has investigated the issue of changes in the crack front constraint as the crack progresses from a state of high constraint (close to plane strain) to a lower constraint (approaching plane stress). This issue was investigated both experimentally and with the development of an improved analytical model. A test program was conducted on several specimens, loaded under constant-amplitude, constant-amplitude with spike-overloads and a variable amplitude spectrum. Crack-opening stress levels were measured at key points in the tests and the results were used to develop and evaluate improved modelling approaches. The improved model was generally able to predict crack growth within about ± 30 % of that demonstrated along with the correct form of the crack growth, which is a significant advance and will lead to reduced costs and increased safety.
Read full abstract