Abstract

This work presents a numerical study of crack-front constraint for SENT specimens of X80 pipeline steel, to examine geometry effect on the correlation of crack-front stress field and constraint. An average measure of constraint over crack-front Am was employed to characterize the crack-front constraint. SENT specimens with varying geometries (different crack depth to specimen width ratio, a/W, and different specimen width and thickness, W/B) were analyzed by Gurson-Tvergaard-Needleman model (GTN model). Results showed that the stress triaxiality Am can characterize the crack-front constraint of X80 pipeline steel very well. The level of the Am-△a curve rises with the decrease of crack depth, and increases first and then decreases with the increase of SENT specimen thickness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.