Large-volume hydraulic concrete structures, such as concrete dams, often suffer from damage due to the influence of alternating loads and material aging during the service process. The occurrence and further expansion of cracks will affect the integrity, impermeability, and durability of the dam concrete. Therefore, monitoring the changing status of cracks in hydraulic concrete structures is very important for the health service of hydraulic engineering. This study combines computer vision and artificial intelligence methods to propose an automatic damage detection and diagnosis method for hydraulic structures. Specifically, to improve the crack feature extraction effect, the Xception backbone network, which has fewer parameters than the ResNet backbone network, is adopted. With the aim of addressing the problem of premature loss of image detail information and small target information of tiny cracks in hydraulic concrete structures, an adaptive attention mechanism image semantic segmentation algorithm based on Deeplab V3+ network architecture is proposed. Crack images collected from concrete structures of different types of hydraulic structures were used to develop crack datasets. The experimental results show that the proposed method can realize high-precision crack identification, and the identification results have been obtained in the test set, achieving 90.537% Intersection over Union (IOU), 91.227% Precision, 91.301% Recall, and 91.264% F1_score. In addition, the proposed method has been verified on different types of cracks in actual hydraulic concrete structures, further illustrating the effectiveness of the method.