AbstractWe present a full description and analysis of the complete mitochondrial genome of a Pacific Ocean specimen of the coconut crab Birgus latro (Linnaeus, 1767), the largest extant terrestrial arthropod in the world. Our de novo-assembled mitogenome has a massive 16,161 times organelle read coverage, a length of 16,411 bp, contains 22 tDNAs (20 unique), 13 protein-coding genes, two rDNAs, and a putative control region of length 1,381 bp. The control region contains three microsatellites and two pairs of inverted repeats. Contrary to the mitochondrial sentinel gene concept, two-dimensional nucleotide analysis reveals higher GC-content in cox gene families than in nadh gene families. Moreover, cox gene families are more conserved than nadh gene families among the species of Coenobitidae selected for comparison. Secondary structure prediction of the 22 tDNAs shows major deviations from the cloverleaf pattern, which points to a relatively high rate of mutation in these genes. We also present a repertoire of mitochondrial variation between our male Okinawan coconut crab and an Indian Ocean specimen that consists of one insertion, one deletion, 135 SNPs, three MNPs and nine complex polymorphisms. We provide confirmatory evidence that the superfamily Paguroidea, to which the coconut crab belongs, is polyphyletic, that all the protein-coding genes of B. latro are under purifying selection, and that a Pacific versus Indian Ocean coconut crab population divergence occurred during the Pleistocene.
Read full abstract