Soil chromium (Cr) accumulation is escalating, severely hindering plant growth and development. Plant growth-promoting bacteria (PGPB) have shown potential in enhancing plant tolerance to heavy metals. However, the role and mechanisms of Cr(VI)-reducing PGPB strains in improving the growth of pakchoi under Cr toxicity remain unclear. This study aimed to isolate a Cr(VI)-reducing PGPB strain from Cr-contaminated soil, evaluate its effect on pakchoi growth under Cr(VI) stress, and investigate the mechanisms involved. Our findings showed that Bacillus sp. NEAU-DCB1-2 effectively reduce Cr(VI) to Cr(III) and produced indole-3-acetic acid and siderophores. Under Cr(VI) stress, inoculation with NEAU-DC1-2 significantly promoted seed germination and early growth of pakchoi. In pot experiments, NEAU-DCB1-2 significantly increased biomass accumulation, plant height, and root length of Cr(VI)-treated pakchoi seedlings, while reducing the Cr(VI) content in root, shoot and soil. Moreover, NEAU-DCB1-2 greatly increased catalase, superoxide dismutase, peroxidase, and ascorbate peroxidase activities in seedlings under Cr(VI) stress, thereby reducing malondialdehyde content. Transcriptome analysis indicated substantial alterations in gene expression patterns after inoculation with NEAU-DCB1-2 under Cr(VI) stress. Further analyses revealed that NEAU-DCB1-2 mainly affected the responses of antioxidant system, metal chelation and transport, together with auxin, abscisic acid, and jasmonic acid signaling to Cr(VI) stress. Conclusively, the Cr(VI)-reducing PGPB strain NEAU-DCB1-2 significantly enhances the growth and Cr tolerance of pakchoi through multiple mechanisms, offering a valuable microbial resource for mitigating the adverse effects of heavy metal contamination in agricultural soils on the yield and safety of vegetable crops.
Read full abstract