In this paper we study the complex indicatrix associated to a complex Finsler space as an embedded CR - hypersurface of the holomorphic tangent bundle, considered in a fixed point. Following the study of CR - submanifolds of a K?hler manifold, there are investigated some properties of the complex indicatrix as a real submanifold of codimension one, using the submanifold formulae and the fundamental equations. As a result, the complex indicatrix is an extrinsic sphere of the holomorphic tangent space in each fibre of a complex Finsler bundle. Also, submersions from the complex indicatrix onto an almost Hermitian manifold and some properties that can occur on them are studied. As application, an explicit submersion onto the complex projective space is provided.