The interactions of the Lewis bases CO, octamethyltrisiloxane (OMTS) and 2,2'-bipyridine (bipy) with a sheet model for the principal activator (MeAlO)16 (Me3 Al)6 (16,6) in hydrolytic methylaluminoxane (MAO) were investigated by DFT. These studies reveal that OMTS and bipy form adducts with Me3 Al prior to methide abstraction by 16,6 to form the ion-pairs [Me2 Al(κ2 -L)][16,6] (5: L=OMTS, 6: L=bipy, [16,6]- =[(MeAlO)16 (Me3 Al)6 Me]- ) while CO simply binds to a reactive edge site without ionization. The binding and activation of Cp2 ZrMe2 with 16,6 to form both neutral adducts 1 Cp2 ZrMe2 ⋅16,6 and contact ion-pairs 4 and 7, both with formula [Cp2 ZrMe][μ-Me(MeAlO)16 (Me3 Al)6 ], featuring terminal and chelated MAO-anions, respectively was studied by DFT. The displacement of the anion with either excess Cp2 ZrMe2 or Me3 Al was also studied, forming outer-sphere ion-pairs [(Cp2 ZrMe)2 μ-Me][16,6] (2) and [Cp2 Zr(μ-Me)2 AlMe2 ][16,6] (3). The theoretical NMR spectra of these species were compared to experimental spectra of MAO and Cp2 ZrMe2 and found to be in good agreement with the reported data and assignments. These studies confirm that 16,6 is a very suitable model for the activators present in MAO but highlight the difficulty in accurately calculating thermodynamic quantities for molecules in this size regime.