Using three theoretical methods, QTAIM, IQA, and NCI, we analyze an influence of halogen atoms X (X = F, Cl) substituted at various positions in the -SiH3-nXn group on the charge density distribution within the η(2)-SiH bond and on the SiH bond energies in Cp(OC)2Mn[η(2)-H(SiH3-nXn)] complexes and isolated HSiH3-nXn molecules. It is shown that shortening of the η(2)-SiH bond in Cp(OC)2Mn[η(2)-H(SiH3-nXn)] complexes should be considered as a normal inductive result of halogenation. This η(2)-SiH bond's compression may, however, be overcome by a predominant elongation resulting from a contingent presence of a halogen atom at position trans to the η(2)-SiH bond. This trans effect is particularly large for bulky and highly polarizable chlorine. Moreover, peculiar properties of the trans chlorine atom are manifested in several ways. To explain the origin of all the observed changes in both the length and the electron charge distribution of the η(2)-SiH bond in investigated Cp(OC)2Mn[η(2)-H(SiH3-nXn)] complexes a new model, called the Conciliatory Inductive Model, is being proposed.