The overlap between the geographic distribution of COVID-19 outbreaks and pollution levels confirmed a correlation between exposure to atmospheric particulate matter (PM) and the SARS-CoV-2 pandemic. The RAS system is essential in the pathogenesis of inflammatory diseases caused by pollution: the ACE/AngII/AT1 axis activates a pro-inflammatory pathway, which is counteracted by the ACE2/Ang(1-7)/MAS axis, which activates an anti-inflammatory and protective pathway. However, ACE2 is also known to act as a receptor through which SARS-CoV-2 enters host cells to replicate. Furthermore, in vivo systems have demonstrated that exposure to PM increases ACE2 expression. In this study, the effects of acute and sub-acute exposure to ultrafine particles (UFP), originating from different anthropogenic sources (DEP and BB), on the levels of ACE2, ACE, COX-2, HO-1, and iNOS in the lungs and other organs implicated in the pathogenesis of COVID-19 were analyzed in the in vivo BALB/c male mice model. Exposure to UFP alters the levels of ACE2 and/or ACE in all examined organs, and exposure to sub-acute DEP also results in the release of s-ACE2. Furthermore, as evidenced in this and our previous works, COX-2, HO-1, and iNOS levels also demonstrated organ-specific alterations. These proteins play a pivotal role in the UFP-induced inflammatory and oxidative stress responses, and their dysregulation is linked to the development of severe symptoms in individuals infected with SARS-CoV-2, suggesting a heightened vulnerability or a more severe clinical course of the disease. UFP and SARS-CoV-2 share common pathways; therefore, in a "risk stratification" concept, daily exposure to air pollution may significantly increase the likelihood of developing a severe form of COVID-19, explaining, at least in part, the greater lethality of the virus observed in highly polluted areas.
Read full abstract