We conducted a retrospective cohort study to validate the efficacy of the Australian multitrait fertility estimated breeding value (EBV). We did this by determining its associations with phenotypic measures of reproductive performance (i.e., submission rate, first service conception rate, and early calving). Our secondary aim was to report the associations between these reproductive outcomes and management and climate-related factors hypothesized to affect fertility. Our study population included 38 pasture-based dairy herds from the northern Victorian irrigation region in Australia. We collected records for 86,974 cows with 219,156 lactations and 438,578 mating events from the date on which managers started herd recording until December 2016, comprising both fertility-related data such as insemination records, calving dates, and pregnancy test results, and systems-related data such as production, herd size, and calving pattern. We also collected hourly data from 2004 to 2017 from the closest available weather station to account for climate-related factors (i.e., temperature humidity index; THI). Multilevel Cox proportional hazard models were used to analyze time-to-event outcomes (days to first service, days to cow calving following the planned herd calving start date), and multilevel logistic regression models for binomial outcomes (conception to first service) in the Holstein-Friesian and Jersey breeds. A 1-unit increase in daughter fertility EBV was associated with a 5.4 and 8.2% increase in the daily hazard of calving in the Holstein-Friesian and Jersey breeds respectively. These are relative increases (i.e., a Holstein-Friesian herd with a 60% 6-wk in-calf rate would see an improvement to 63.2% with a 1-unit increase in herd fertility EBV). Similar results were obtained for submission and conception rate. Associations between 120-d milk yield and reproductive outcome were complicated by interactions with 120-d protein percentage and calving age, depending on the breed and outcome. In general, we found that the reproductive performance of high milk-yielding animals deteriorated faster with age than low milk-yielding animals, and high protein percentage exacerbated the differences between low and high milk-yielding animals. Climate-related factors were also associated with fertility, with a 1-unit increase in maximum THI decreasing first service conception rate by 1.2% for Holstein-Friesians but having no statistically significant association in the Jersey breed. However, THI had a negative association in both breeds on the daily hazard of calving. Our study validates the efficacy of the daughter fertility EBV for improving herd reproductive performance and identifies significant associations between 120-d milk and protein yields and THI on the fertility of Australian dairy cows.